
会员
人工智能简史(第2版)
更新时间:2021-07-09 10:38:15 最新章节:看完了
书籍简介
《人工智能简史》全面讲述人工智能的发展史,几乎覆盖人工智能学科的所有领域,包括人工智能的起源、自动定理证明、专家系统、神经网络、自然语言处理、遗传算法、深度学习、强化学习、超级智能、哲学问题和未来趋势等,以宏阔的视野和生动的语言,对人工智能进行了全面回顾和深度点评。第2版中每章都有新增内容,并增加了全新的第13章,整理了人工智能几大派别的演化路线和人物的继承关系,有助读者阅读方便。本书极具专业性、思想性和趣味性,既适合缺少专业背景的读者了解人工智能的来龙去脉,作为人工智能的启迪之书,也适合专业人士了解人工智能鲜为人知的历史,提供深入学习的指导。
品牌:人邮图书
上架时间:2021-01-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
尼克
最新上架
- 会员这是一本全方位讲解如何利用AI工具为HR赋能的著作,是AI时代HR提升职场竞争力的实战指南。作者基于深厚的HR管理经验和AI实战经验,通过科学的方法、高效的提示词、丰富的案例、清晰的步骤,细致地讲解了如何利用AI工具提高工作效率、优化管理流程、提升人才管理水平。从AIGC的基础知识到AI工具的使用,从AI在人力资源全生命周期所有场景中的应用到使用AI的风险防控,本书全面系统地讲解了HR需要掌握的全计算机20.6万字
- 会员作为一本技术性很强的书,《中国人形机器人创新发展报告2025》覆盖人工智能、大模型、视觉捕捉、自动化控制等一些列技术和学科。本书系统性梳理了《人形机器人创新发展指导意见》发布以来中国人形机器人产业在关键技术、产品培育、场景应用、生态营造、支撑能力以及保障措施等多方面的发展态势,通过多角度案例研究,全面解析了中国在这一领域的成果与经验,力图展示中国人形机器人产业的全貌,洞察人形机器人产业未来发展的新计算机9万字
- 会员本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字
- 会员本书共分为8章,分别讲解了常见的人工智能以及人工智能影响下的广告流量变现、商业合作变现、直播变现、私域变现和IP变现等。此外,还对未来的人工智能与新媒体变现做了趋势分析。计算机10.5万字
- 会员本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字
同类书籍最近更新
- 会员本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle人工智能0字
- 会员本书专注讨论深度学习中应用非常广泛的模型——卷积神经网络,该模型特别适用于图像分类和识别、目标分割和检测以及人工智能游戏方面,受众对象包括计算机、自动化、信号处理、机电工程、应用数学等相关专业的研究生、教师以及算法工程师和科研工作者。本书的最大特色是对卷积神经网络进行由浅入深的分类描述,依次包括:现代雏形、突破模型、应变模型、加深模型、跨连模型、区域模型、分割模型、特殊模型、强化模型和顶尖成就。这人工智能14.8万字
- 会员随着深度学习技术的发展、计算能力的提升和视觉数据的增加,计算机视觉技术在图像搜索、智能相册、人脸闸机、城市智能交通管理、智慧医疗等诸多领域都取得了令人瞩目的成绩。越来越多的人开始关注这个领域。计算机视觉包含多个分支,其中图像分类、目标检测、图像分割、目标跟踪等是计算机视觉领域最重要的几个研究课题。本书介绍的目标检测技术,本质上就是通过计算机运行特定的算法,检测图像中一些受关注的目标。当今时代,我们人工智能8.6万字
- 会员本书是《智能计算系统》的配套实验教程,结合智能计算系统的软硬件技术栈设计了基于通用CPU平台和深度学习处理器平台的分阶段实验和综合实验。其中,分阶段实验以风格迁移作为驱动范例,包括算法实验(第2~3章)、编程框架实验(第4章)、智能编程语言实验(第5章)、深度学习处理器运算器设计实验(第6章)。通过完成分阶段实验,读者可以开发出一个可完成图像风格迁移任务的智能计算系统。综合实验(第7章)包括目标检人工智能13.4万字